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Abstract
With the use of perturbation theory the zero- and higher-order approximations
are obtained for characteristic matrices, reflection and transmission operators,
scalar reflectance and transmittance of monochromatic electromagnetic waves
impinging on a transparent weakly inhomogeneous stratified bianisotropic
medium. The proposed procedure of perturbation series formation enables
finding the corrections to the reflection and transmission factors in closed
form for specified coordinate dependencies for the material tensors of the
bianisotropic layers. The general expressions obtained are applied to calculate
the first-order corrections for normal incident light on (i) a twisted uniaxial
slab, (ii) an isotropic medium with arbitrary inhomogeneity profile and
(iii) a one-dimensional photonic crystal with arbitrary number of layers.
Exact and approximate solutions of the wave equations are numerically
compared.

PACS number: 42.25.Bs

1. Introduction

Bianisotropic media constitute the most general class of linear media, in which the electric
induction D and the magnetic field strength H depend on the electric field strength E

and the magnetic induction B [1–3]. Constitutive equations for such media are linear and
tensorial and can be presented in different equivalent forms [3, 4]. In a number of cases
the constitutive equations are used, where vectors D and B are expressed in terms of E

and H . Simpler media belonging to the class of bianisotropic ones (bi-isotropic reciprocal
and nonreciprocal, anisotropic and isotropic media) are characterized by fewer material
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constants involved in the constitutive equations. Various kinds of the constitutive equations
for bianisotropic and gyrotropic media along with optical properties and effects of frequency
and spatial dispersion in these media are discussed in numerous works (see, for example,
[1–17, 43, 46]).

In recent years, the attention of many researches is focused on artificial non-conventional
materials with unusual optical properties such as left-handed media [18–20], photonic crystals
[21–23], metamaterials based on carbon nanotubes [24] and others. From the viewpoint of
classical electrodynamics the properties of such materials can be explained both by structure
of constitutive equations (for example, simultaneously negative dielectric permittivity and
magnetic permeability for left-handed media) and by inhomogeneity and non-stationarity
of the materials (i.e. spatial and temporal dependence of the material parameters). The
simplest, but nonetheless practically important instance of inhomogeneous media are one-
dimensional inhomogeneous or stratified media. In general, inhomogeneity in one dimension
can be mathematically described by piecewise continuous tensorial functions of one spatial
coordinate for the material parameters (particular cases are continuous and piecewise constant
functions). It is known that Maxwell’s equations for the monochromatic electromagnetic field
in a stratified anisotropic medium can be reduced to the system of the first-order ordinary
differential equations for the tangential components of the field [25, 26] (see also [27, 28,
37, 38, 43]). For arbitrary coordinate dependence of the material parameters it is impossible
to find closed-form solutions. There is a variety of exact and approximate techniques for
analysis of electromagnetic wave propagation in stratified structures including the bianisotropic
ones. In particular, those are Brillouin zone theory [29], approximation of geometrical optics
[30–32], operator methods [33–46] based on Fedorov’s works on SO(3) covariant crystal
optics and crystal acoustics [3, 47–49], Green function techniques [50–54], vector circuit
theory [55], wave splitting in the time-domain [52, 56, 57], transformation equation [58]
and vector Fresnel equation [59] techniques; eigenwave technique for description of x-ray
reflection and diffraction [60] and others. A number of new methods is used to reveal
interdependence between symmetry of multilayered media including fractal ones and their
spectral periodicity [61–64]. In papers [33–35], the three-dimensional operators of spatial
evolution for electromagnetic field were introduced for the first time which are in essence
optical analogues of quantum-mechanical temporal evolution operators for Schrödinger’s
equation. Later on the evolution operators were used for solving a number of problems
in optics of stratified media [37, 38, 42–44, 46]. In [35, 37, 41, 43], the covariant
impedance tensor formalism was developed for calculation of light reflection and refraction
by inhomogeneous structures; in [36, 43] an operator-based multiple reflection method was
proposed for the analysis of light propagation in stratified anisotropic and bianisotropic
media, generalizing the existing analogous scalar methods [65]. In the papers [39],
operator generalization was extended to the basic concepts of geometrical optics of stratified
media.

One of the widespread methods of modern physics is the Green function technique [66]
and perturbation theory associated with it. We do not dwell here on numerous references
concerning these problems. Note that the perturbation methods are productively used both in
classical and quantum physics. The use of these methods in quantum physics is based on a
possibility to divide a Hamiltonian into two parts. One of them is the unperturbed part H0

and the other is the addition λH1 with a small parameter λ. It is assumed that the spectrum
of the unperturbed Hamiltonian H0 can be calculated in some way. As a result it turns out to
compose a formal perturbation series in terms of powers of λ.

In many practically important optical applications anisotropic or bianisotropic media are
weakly inhomogeneous, i.e. the medium characteristics change only slightly at the distances of
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the order of wavelength. It is evident that in this case the system matrix of the wave differential
equations of the first order [26, 43] can be divided into the basic coordinate-independent part
corresponding to some effective homogeneous medium and the coordinate-dependent small
addition. The perturbation methods enable to find the Green function for the system of
equations under consideration.

The purpose of this paper is to develop the perturbation series for the spatial evolution
operators (characteristic matrices), the reflection and transmission operators as well as the
scalar reflectance and transmittance of monochromatic light obliquely incident on a transparent
weakly inhomogeneous bianisotropic layer surrounded by a homogeneous isotropic medium.
We use the operator methods to calculate the reflection and transmission of inhomogeneous
media [37, 38, 43]. In section 2, general expressions for the system matrix elements of
wave equations are given for the case of oblique light incidence on the bianisotropic layer
characterized by material tensors ε(ω), µ(ω), α(ω) and β(ω). The reflection and transmission
operators are expressed in terms of the evolution operator (propagator) of the layer and the
surface impedance tensors of the incident, reflected and transmitted waves. For arbitrary
light polarization including partial polarization the reflection and transmission factors are
presented in covariant form. These factors are quadratic forms of the corresponding reflection
and transmission operators. In section 3, we compose a formal perturbation series for the
propagator of the layer, then we consider eigenvectors of the unperturbed propagator and find
the matrix elements of the propagator for any order of perturbation theory. These elements
correspond to contribution of a pure eigenwave that leaves the layer if an entering eigenwave is
specified. With the use of the series for the propagator we construct the corresponding series
for the reflection and transmission factors. In the zeroth order these factors coincide with
reflectance and transmittance of the effective homogeneous bianisotropic layer. The obtained
relations are used in section 4 to calculate the first-order correction to the reflectance and
transmittance of an uniformly twisted uniaxial slab for normal light incidence. Inhomogeneity
of the slab is due to spatial rotation of the principal axes of the dielectric permittivity tensor but
the principal values of this tensor remain coordinate independent. Continuous axial twisting
can be caused by the material structure and/or external action. In particular, helical twisted
structure is typical for cholesteric liquid crystals [67–69, 27] studied in many works (see, for
example, [70–73]). In the zero-order approximation we substitute the slab for an effective
isotropic medium with the refraction index coincident with that of ordinary waves in the
slab. The formal perturbation series is also used to calculate the first-order corrections to the
reflectance and transmittance of a weakly inhomogeneous isotropic medium with arbitrary
profile of dielectric permittivity ε(z) for normal light incidence (section 5). This case is of
great importance for different applications of atmosphere radiophysics, optoelectronics and
modern nanoscience [27, 65]. General expressions for these corrections involve Fourier-
transform components of ε(z). Then they are used to derive reflection and transmission
of a one-dimensional photonic crystal with an arbitrary number of alternating layers with
different refractive indices n1 and n2. In section 6, we compare numerically the zero- and first-
order approximate reflectance with the exact one. Dependence of the approximate and exact
reflection factors on several parameters of a twisted crystal is studied. These parameters are
the slab thickness, difference of the principal values of the dielectric permittivity tensor (small
perturbation parameter), refractive index of the cladding isotropic medium, orientation of light
polarization and spatial period of twisting. For weakly inhomogeneous photonic crystals we
compare the approximate and exact reflection factors depending on the electromagnetic wave
frequency close to photonic band gaps. Finally, we discuss the basic results of the paper in
section 7.
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Figure 1. Reflection and refraction of an electromagnetic wave by the bianisotropic layer (ϕ is the
angle of incidence).

2. Fresnel’s reflection and transmission operators

Consider oblique incidence of a plane electromagnetic wave with frequency ω on a
bianisotropic layer II surrounded by a homogeneous isotropic medium with dielectric
permittivity ε′ and magnetic permeability µ′ (domains I and III, figure 1). Let the z-axis
of Cartesian coordinates be directed perpendicular to the layer, planes z = z0 and z = z′ are
interfaces, the layer is inhomogeneous in the z-direction. Let us introduce the right-handed
triple of unit vectors b, q and a = b × q, where q is the normal vector to the layer directed
along the z-axis, the vectors b and q determining the plane of incidence. Spatial dependence
of the electromagnetic field vectors is described by equations

{E(r), D(r), H(r), B(r)} = {E(z), D(z), H(z), B(z)} exp(iκbr),

where κ is the projection of the wave vector onto the b-direction. In particular, for normal
wave incidence κ = 0.

Constitutive equations for the wave field in the bianisotropic layer have the form [3, 4]

D = ε(ω)E + α(ω)H, B = β(ω)E + µ(ω)H, (1)

where the three-dimensional tensors ε and µ characterize dielectric and magnetic properties
of the layer at frequency ω, while the tensors α and β describe magnetoelectric properties.
These tensors are functions of z-coordinate (z0 < z < z′).

From Maxwell’s equations supplemented by relations (1) it follows that the tangential
components of the electromagnetic field within the layer are subjected to the following matrix
system of the first-order differential equations:

dU(z)

dz
= ik0N(z)U(z), N(z) =

(
N11 N12

N21 N22

)
, U(z) =

(
Hτ

q × E

)
, (2)

where k0 = ω/c; Hτ = IH = −q × (q × H) is the tangential component of H;
I = −q×2 = 1 − q ⊗ q is the projective operator; 1 is the unit tensor of three-dimensional
space; sign ⊗ marks the direct (tensor, dyadic) product of vectors; q× is the tensor dual
to the vector q (q×

im = eijmqj [3, 47], eijm is the completely antisymmetric Levi–Civita
pseudotensor).

Tensorial elements of matrix N(z) are expressed in terms of ε, µ, α and β in an intricate
manner (see, for example, [43])
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N11 = q×αI − 1

	
(εqb1 ⊗ qµI − µqq

×εq ⊗ a2 − αqq
×εq ⊗ qµI + βqb1 ⊗ a2),

N12 = −q×εq× − 1

	
(εqb1 ⊗ b2 − µqq

×εq ⊗ qεq× − αqq
×εq ⊗ b2 + βqb1 ⊗ qεq×),

N21 = IµI − 1

	
(εqIµq ⊗ qµI + µqa1 ⊗ a2 + αqa1 ⊗ qµI + βqIµq ⊗ a2), (3)

N22 = −Iβq× − 1

	
(εqIµq ⊗ b2 + µqa1 ⊗ qεq× + αqa1 ⊗ b2 + βqIµq ⊗ qεq×),

where the following vectors:

a1 = κ

k0
a − Iβq, a2 = κ

k0
a − qαI, b1 = κ

k0
b + q×αq, b2 = κ

k0
b − qβq×

and scalars εq = qεq, µq = qµq, αq = qαq, βq = qβq,	 = εqµq − αqβq are introduced.
If a solution of the system of equations (2) is found, then one can restore the complete vectors
E and H from the known components Hτ and q × E as(

H(z)

E(z)

)
= V (z)U(z), V (z) =

(
V11 V12

V21 V22

)
, (4)

where the elements of the restoration matrix V have the form

V11 = I − 1

	
q ⊗ (εqqµI + βqa2), V12 = − 1

	
q ⊗ (εqb2 + βqqεq×),

V21 = 1

	
q ⊗ (µqa2 + αqqµI), V22 = −q× +

1

	
q ⊗ (µqqεq× + αqb2).

(5)

The elements of matrix N are planar tensors, i.e. Nijq = qNij = 0, Nij I = INij =
Nij , i, j = 1, 2.

Equations (2) and (3) are covariant (i.e. they are invariant with respect to transformations
of rotation group SO(3)), and have the same form regardless of the choice of basis in three-
dimensional space. In particular, if the x-axis, y-axis and z-axis are directed along vectors
b,−a and q, respectively, and µ = 1, α = β = 0 then equations (2) can be reduced to the
known Berreman’s equations [26] for components Hx,Hy,−Ey,Ex .

Note that in [45] the matrix system (2) was represented in an equivalent form. The
elements of matrix N were expressed in terms of tensorial bilinear forms of vectors b and
q. The obtained system of equations has been used for general analysis of the surface wave
propagation in linear bianisotropic stratified media and derivation of the dispersion relations
for surface polaritons.

If the field U(z0) at the interface z = z0 is known, then the field in any other point
with coordinate z (z > z0) can be found with the use of an evolution operator (propagator,
characteristic matrix) P(z, z0) according to the formula

U(z) = P(z, z0)U(z0). (6)

It is evident that P(z, z0) satisfies the equation analogous to (2)
dP(z, z0)

dz
= ik0N(z)P (z, z0), (7)

and in addition P(z0, z0) = E, where

E =
(

I 0
0 I

)
. (8)

Using the propagator of the bianisotropic layer P ≡ P(z′, z0) and the surface impedance
tensor γ which relates the vectors Hτ and q × E according to the formula

q × E = γHτ , (9)
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it is not difficult to calculate Fresnel’s reflection and transmission operators r and d [37, 43]
of the layer. These operators are planar (rI = Ir = r, dI = Id = d) and they enable finding
the tangential components of the magnetic field strength for the reflected H r

τ and transmitted
Hd

τ wave in terms of the tangential component of the incident wave field H i
τ :

H r
τ = rH i

τ , Hd
τ = dH i

τ . (10)

We have PU d = U i + U r or in expanded form, considering (9) and (10)

P

(
I

γ d

)
dH i

τ =
(

I

γ i

)
H i

τ +

(
I

γ r

)
rH i

τ , (11)

where γ i, γ r and γ d are surface impedance tensors of the incident, reflected and transmitted
wave, respectively, in the surrounding isotropic medium [37, 43]. Since the z-projections of
the incident and transmitted wave vector are the same, and the projection of the reflected wave
vector is opposite in sign, then γ r = −γ i = −γ d ≡ γ . Multiplying equation (11) from the
left first by matrix (γ − I ) and then by matrix (γ I) and omitting H i

τ , we obtain

r = (I γ −)P

(
I

−γ

) [
(I − γ −)P

(
I

−γ

)]−
, d = 2

[
(I − γ −)P

(
I

−γ

)]−
,

(12)

where the sign − denotes pseudoinversion of a planar tensor (i.e. γ −γ = γ γ − = I ).
From (2) and (9) it follows that the surface impedance tensor γ obeys the tensorial Riccati

equation

dγ

dz
+ ik0(γN11 + γN12γ − N21 − N22γ ) = 0. (13)

The tensor γ involved in equations (12) is related to the isotropic medium that surrounds the
layer and is characterized by scalar parameters ε′, µ′ (α′ = β ′ = 0). Therefore from (3) we
have N11 = N22 = 0, N12 = ε′I − κ2b ⊗ b

/(
µ′k2

0

)
, N21 = µ′I − κ2a ⊗ a

/(
ε′k2

0

)
for this

medium. Moreover, the medium is homogeneous so γ does not depend on z and in view of
(13) satisfies algebraic equation γN12γ = N21. In consideration of b ⊗ b + a ⊗ a = I we
have

γ = N−
12

√
N12N21 = µ′b ⊗ b√

ε′µ′ − κ2/k2
0

+
1

ε′

√
ε′µ′ − κ2

k2
0

a ⊗ a (14)

(see also [43]). Taking into account that κ/k0 = sin ϕ
√

ε′µ′, where ϕ is the angle of incidence
of the wave we arrive at another representation of the tensor γ

γ =
√

µ′

ε′

(
b ⊗ b

cos ϕ
+ cos ϕa ⊗ a

)
. (15)

Thus, the equations (12) and (14) (or (15)) completely determine the reflection and
transmission operators r and d provided that the layer propagator P is evaluated beforehand.

As a rule, what one measures experimentally is the scalar reflection and transmission
factors R and D equal to the ratio of the reflected and transmitted wave intensity, respectively,
to the incident wave intensity. They are quadratic functions of the operators r and d. It is
convenient to calculate these factors using the beam tensor (coherence tensor) [3], which is
determined as follows:

� =
∑

s

Hs ⊗ H∗
s ,

6
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where the subscript s enumerates the separate incoherent constituents of the wave with
amplitudes Hs . The wave intensity is found as a trace of the coherence tensor I = tr �.

Let an incident wave consist of incoherent waves with amplitudes H i
s . Then the refracted

wave will consist of the waves with amplitudes H r
s = vrrIH i

s = vrrH i
s , where vr is the

three-dimensional restoration operator of the vector H r
s from its tangential component H r

τs .
The coherence tensor of the refracted wave is

�r =
∑

s

vrrH i
s ⊗ H i∗

s r+vr+ = vrr�ir+vr+,

where �i is the coherence tensor of the incident wave, the sign + denoting Hermitian
conjugation. Without loss of generality we put the incident wave intensity to unity. Then the
reflection factor is

R = tr(vr+vrr�ir+). (16)

Starting from the equations (4) and (9), we ascertain that vr = V11 + V12γ
r = V11 + V12γ ,

where the tensor γ has the form (15), and according to (5) for the isotropic medium
V11 = I, V12 = −κq ⊗ b/(µ′k0) = − sin ϕ

√
ε′/µ′q ⊗ b. Then vr = I − tan ϕq ⊗ b,

and equation (16) takes the form

R = tr(wr�ir+), (17)

where

w = vr+vr = I + tan2 ϕb ⊗ b = b ⊗ b

cos2 ϕ
+ a ⊗ a. (18)

Analogously considering the transmitted wave (γ d = −γ ), we find the transmittance of
the layer

D = tr(wd�id+), (19)

where the tensor w is determined by the same formula (18).
General relations (17) and (19) can be applied for light that is linear polarized in some

direction h (|h|2 = 1, hn = 0, n = sin ϕb − cos ϕq is a phase normal), as well as for
nonpolarized and partially polarized light. For the first case �i = h ⊗ h∗. For nonpolarized
light �i = − 1

2n×2. Finally, if light is partially polarized then �i is represented by sum of

‘polarized’ and ‘nonpolarized’ parts [3]: �i = ph ⊗ h∗ − 1
2 (1 − p)n×2, where p is the

polarization degree (0 � p � 1).
Generally it is impossible to find analytically exact solution of system (2) even if one of

the tensors ε, µ, α or β involved in (1) depends arbitrarily on z. So the approximate solution
techniques including perturbation method are of great importance.

3. Calculation of the layer propagator by perturbation method

Perturbation methods are widely used in modern physics and are expounded in numerous
monographs and papers. Here, we briefly outline the basic steps of constructing the
perturbation series for the matrix P(z′, z0), taking into account specific features of light
transmission through a bianisotropic layer.

Let the bianisotropic layer be weakly inhomogeneous, i.e. components of tensors ε, µ, α

and β slightly change in the interval from z0 to z′:

max
z0<z<z′

εij − min
z0<z<z′

εij � 1, max
z0<z<z′

µij − min
z0<z<z′

µij � 1,

(20)
max

z0<z<z′
αij − min

z0<z<z′
αij � 1, max

z0<z<z′
βij − min

z0<z<z′
βij � 1,

7
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i, j = 1, 2, 3. It enables a decomposition of the matrix N(z) (2) into a constant part, which
does not depend on z, and a part N (z) with matrix elements on the order of magnitude of the
differences in (20):

N(z) = N0 + N (z). (21)

As a matter of fact, the choice of the matrix N0 is ambiguous. Additional constrains for N0

will be discussed later.
The perturbation series for P(z′, z0) has the form

P(z′, z0) = P (0)(z′ − z0) + P (1)(z′, z0) + · · · + P (n)(z′, z0) + · · · , (22)

at z′ > z0 the nth term of the series determined by the expression (n � 1)

P (n)(z′, z0) = (ik0)
n

∫ z′

z0

dzn

∫ zn

z0

dzn−1 · · ·
∫ z3

z0

dz2

∫ z2

z0

dz1P
(0)(z′ − zn)N (zn)

×P (0)(zn − zn−1) · · ·N (z2)P
(0)(z2 − z1)N (z1)P

(0)(z1 − z0). (23)

Equations (22) and (23) contain the zero-order approximation of the propagator

P (0)(z) = eik0zN0 , (24)

which is a solution of equation (7) for N(z) = N0.
All upper limits of integration in (23) can be changed to z′ if the retarded Green’s function

is used

Pc(z) = θ(z)P (0)(z) = θ(z) eik0zN0 , (25)

where θ(z) is the Heaviside unit step function (θ(z) = 1 for z � 0 and θ(z) = 0 for z < 0).
Then

P (n)(z′, z0) = (ik0)
n

∫ z′

z0

dzn

∫ z′

z0

dzn−1 · · ·
∫ z′

z0

dz2

∫ z′

z0

dz1P
(0)(z′ − zn)N (zn)

×Pc(zn − zn−1) · · ·N (z2)Pc(z2 − z1)N (z1)P
(0)(z1 − z0). (26)

The Green’s function satisfies the equation

dPc(z − z0)

dz
= ik0N0Pc(z − z0) + δ(z − z0)E,

where δ(z) is the Dirac delta function.
In choosing the matrix N0 we assume that it refers to the effective homogeneous

bianisotropic layer with the material tensors ε0, µ0, α0, β0 which is only slightly different
from ε(z), µ(z), α(z), β(z). Consider the eigenvectors Um of N0 belonging to the four-
dimensional complex amplitude space C

4 = C
2 ⊕ C

2 (a direct sum of the two-dimensional
spaces orthogonal to q, see explicit form of U in (2)):

N0Um = nmUm, m = 1, . . . , 4. (27)

The unit operator of C
4 is represented by the matrix E (8). In this case, the eigenvalues nm are

wave vector projections of the eigenwaves onto the q-direction in the units of k0. For normal
wave incidence they simply coincide with the refractive indices of the eigenwaves.

For our further use it is essential to establish the conditions that lead to the quantities nm

being real. A necessary (but not sufficient) condition of that is the following set of constraints
on the tensors ε0, µ0, α0, β0:

ε+
0 = ε0, µ+

0 = µ0, β+
0 = α0. (28)

8
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It means that absorption in the homogeneous layer is absent [3]. If conditions (28) are fulfilled
then it follows from (3) that (N0)

+
12 = (N0)12, (N0)

+
21 = (N0)21, (N0)

+
11 = (N0)22 or

T N0 = N+
0 T , T =

(
0 I

I 0

)
. (29)

From (27) and (29) we ascertain that U+
mT is the left eigenvector of the matrix N0 corresponding

to the eigenvalue n∗
m:

U+
mT N0 = n∗

mU+
mT , m = 1, . . . , 4. (30)

At this point it is convenient to use the Dirac notation for vectors in space C
4 and for scalar

product of these vectors

|U 〉 = U, 〈W | = W +T , 〈W |U 〉 = W +T U.

The scalar product defined with the use of a metric operator T can result in both positive and
negative norm of the vectors, i.e. it corresponds to an indefinite metric1 in space C

4. Indeed,

〈Um|Um〉 = (H∗
τm q × E∗

m)T

(
Hτm

q × Em

)
= 2Re q(E∗

m × Hm) = 16π

c
qSm, (31)

where Sm = cRe (E∗
m×Hm)/(8π) is the time averaged Poynting vector of the mth eigenwave.

The vector Sm involved in (31) can have both a positive and a negative projection onto the
q-direction (usually two eigenwaves with different polarization have a positive projection of
S and the other two have a negative one).

It follows from (27) and (30) that

(nm − n∗
m)〈Um|Um〉 = 0, m = 1, . . . , 4.

Consequently, the following two cases are possible: (i) 〈Um|Um〉 
= 0 and nm is real, (ii)
〈Um|Um〉 = 0 and nm is complex. The former corresponds to propagation of usual bulk
eigenwave in the effective layer. In the latter case the eigenwave is an inhomogeneous surface
(evanescent) wave with the energy flux parallel to the interfaces (qSm = 0). If such a wave is
present then it is accompanied by another eigenwave with ‘refractive index’ n∗

m. We eliminate
case (ii) from our further consideration, assuming that the angle of incidence ϕ does not exceed
the critical angle for total reflection (if any), so all quantities nm are real.

Thus, the eigenvectors |Um〉 form a basis in the amplitude space C
4 and can be positively

normalized with the use of the adjoint vectors 〈Um|:
〈Uj |Um〉 = ηj δjm, 〈Uj |Um〉 = δjm, 〈Uj | = ηj 〈Uj |, j,m = 1, . . . , 4, (32)

where ηj = sgn〈Uj |Uj 〉 is the sign of the norm for the vector |Uj 〉 (ηj = ±1), δjm being the
Kronecker delta. The completeness condition of the basis have the form

E =
4∑

m=1

|Um〉〈Um|, (33)

and the matrix N0 is represented as

N0 = N0E =
4∑

m=1

nm|Um〉〈Um|. (34)

Taking into account the equations (33), (34) and an integral representation of the Heaviside
function

θ(z) = 1

2π i

∫ ∞

−∞
dk

eikz

k − i0
,

1 The indefinite metric in Hilbert space can be used, for instance, in a quantization procedure of free electromagnetic
field [74].
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we obtain the formulae for the free propagator P (0)(z) (24)

P (0)(z) =
4∑

m=1

eikmz|Um〉〈Um| (35)

and the Green’s function Pc(z) (25)

Pc(z) = 1

2π

∫ ∞

−∞
dk

4∑
m=1

−i ei(k+km)z

k − i0
|Um〉〈Um| = 1

2π

∫ ∞

−∞
dk eikz

4∑
m=1

−i|Um〉〈Um|
k − km − i0

. (36)

In (35) and (36), the projections km = k0nm of the eigenwave vectors onto the q-direction
have been introduced. The integrands in (36) have singularities located in the complex plane
slightly above the real k-axis. Since all km are real, one can transform the integral as seen in
(36) while still integrating over the real k.

After substitution of equations (35) and (36) into (26) we arrive at the following formula
for the propagator in the nth order of perturbation method:

P (n)(z′, z0) =
4∑

j=1

4∑
s=1

P (n)(j, s) eiksz
′ |Us〉〈Uj |e−ikj z0 , n � 0, (37)

where

P (0)(j, s) = δjs,

P (1)(j, s) = 2π ik0〈Us |N (ks − kj )|Uj 〉,
P (n)(j, s) = 2π(ik0)

n

∫ ∞

−∞
dk(n−1)

∫ ∞

−∞
dk(n−2) · · ·

∫ ∞

−∞
dk′′

∫ ∞

−∞
dk′〈Us |N (ks − k(n−1))

× Pc(k
(n−1))N (k(n−1) − k(n−2)) · · · Pc(k

′′)N (k′′ − k′)Pc(k
′)N (k′ − kj )|Uj 〉,

n � 2. (38)

In (38), we have introduced the Fourier image of the perturbation N (z)2

N (k) = 1

2π

∫ z′

z0

dz e−ikzN (z) (39)

and the Green’s function in the wave number representation

Pc(k) =
4∑

m=1

−i|Um〉〈Um|
k − km − i0

. (40)

The matrix element P (n)(j, s) in (37) corresponds to the nth order contribution of the
sth eigenwave leaving the layer if the j th eigenwave enters the layer. This matrix element is
graphically represented by a Feynman diagram in figure 2. When writing down the expression
for P (n)(j, s) (n � 0) with the use of the diagram, the external input and output lines
with wave numbers kj and ks are associated with eigenvectors |Uj 〉 and 〈Us |, respectively.
The internal line of the virtual wave with an arbitrary wave number k is associated with an
operator Pc(k)/(2π). Integration over such wave numbers is implied. The perturbation of the
inhomogeneous layer (dashed line) which results in a change of wave number by k is described
by an operator 2π ik0N (k).

For the integration over variables k′, . . . , k(n−1) in (38) the following formula is
convenient: ∫ ∞

−∞
dk

f (k)

k − a − i0
= V.P.

∫ ∞

−∞
dk

f (k)

k − a
+ iπf (a), (41)

2 In (39), the limits of integration can be formally changed to −∞ and ∞ if one assumes N (z) = 0 at z � z0 and
z � z′.
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ks

k(n−1)
k(n−2) k

k

kj

ks − k(n−1) k(n−1) − k(n−2) k − k k − kj

Figure 2. The Feynman diagram that corresponds to the n-order matrix element P (n)(j, s).

where sign V.P. on the right-hand side of (41) marks the Cauchy principal value of an improper
integral.

Substituting the equations (22) and (37) into (12), we obtain the series expansion of the
Fresnel’s reflection and transmission operators

r = r(0) + r(1) + r(2) + · · · , d = d(0) + d(1) + d(2) + · · · .
As is obvious from (12), the pseudoinversion operation is used to calculate r and d. If a planar
tensor q is expanded into a series q = q(0) + q(1) + q(2) + · · · then a similar expansion of
the pseudoinverse tensor q− = q−(0) + q−(1) + q−(2) + · · · can be calculated according to the
formulae

q−(0) = (q(0))−, q−(1) = −(q(0))−q(1)(q(0))−,
(42)

q−(2) = (q(0))−[q(1)(q(0))−q(1) − q(2)](q(0))−

and so on.
Finally, for the reflectance R (17) we have R = R(0) + R(1) + R(2) + · · · , where

R(0) = tr(wr(0)�ir(0)+
), R(1) = 2Re tr(wr(1)�ir(0)+

),
(43)

R(2) = tr(wr(1)�ir(1)+
) + 2Re tr(wr(2)�ir(0)+

)

and so on. Analogous formulae can be obtained for the transmittance D (19) too.
To demonstrate the technique proposed above we apply the general relations (22)

and (37) to derive the reflectance and transmittance of a uniformly twisted uniaxial slab
(section 4) as well as of one-dimensional inhomogeneous isotropic medium with arbitrary
permittivity profile ε(z) (section 5) for normal light incidence.

4. Reflectance and transmittance of uniformly twisted uniaxial slab in the first
order of perturbation method

Optical properties of twisted crystals are described by the following dielectric permittivity
tensor:

ε(z) = S(z)εS̃(z), (44)

where

S(z) = exp[φ(z)d×] = d ⊗ d − d×2 cos φ + d× sin φ. (45)

The operator S(z) (45) rotates a vector by an angle of φ(z) around the axis directed along a
unit vector d. The tilde in (44) denotes transposition of the three-dimensional tensor.

11
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An exact operator solution of wave equations for light that propagates along the axis
of twisting in a crystal was obtained for the first time by Borzdov and Barkovsky [34].
Helicoidal bianisotropic media and their different realizations were proposed by Lakhtakia
and Weiglhofer [75].

Here, we consider normal light incidence on a uniaxial twisted dielectric slab of thickness
l with the axis of twisting perpendicular to the interfaces z = z0 = −l/2 and z = z′ = l/2
(d = q). We suppose that the optical axis of the uniaxial slab is parallel to the interfaces and
the twisting is uniform so that φ(z) = az (a is a constant). If h is the period of a function ε(z),
i.e. ε(z + h) = ε(z) then it is connected with a as a = π/h. The dielectric permittivity tensor
ε involved in (44) has the form

ε = ε⊥ + (ε‖ − ε⊥)b ⊗ b, (46)

Two principal values of ε are the same and equal to ε⊥. The third principal value equals
to ε‖. After substitution of (46) into (44) and taking into account that b(z) ≡ S(z)b =
−q×2

b cos φ + q×b sin φ = b cos φ − a sin φ, we obtain

ε(z) = ε⊥ + (ε‖ − ε⊥)b(z) ⊗ b(z) = ε⊥ + 1
2	ε[I + (b ⊗ b − a ⊗ a) cos 2az

− (b ⊗ a + a ⊗ b) sin 2az],

where 	ε = ε‖ − ε⊥ and I = −q×2 = b ⊗ b + a ⊗ a. Propagation of electromagnetic
waves in a twisted dielectric crystal is described by the general system of equations (2) where
only two of the four elements (N12 and N21) of the matrix N(z) (3) will be nonzero for
µ = 1, α = β = 0 and κ = 0 (normal incidence):

N12 = −q×ε(z)q× = ε⊥I + 1
2	ε[I − (b ⊗ b − a ⊗ a) cos 2az + (b ⊗ a + a ⊗ b) sin 2az],

(47)
N21 = I, N11 = N22 = 0.

Supposing that the slab under consideration is weakly anisotropic and (	ε � ε⊥) weakly
inhomogeneous, we isolate the part of N(z) that does not depend on z

N0 =
(

0 ε⊥I

I 0

)
. (48)

It describes propagation of electromagnetic waves in an effective homogeneous isotropic layer
with dielectric permittivity ε⊥. The coordinate-dependent part N (z) of the matrix N(z) has
zero elements N11,N21 and N22 and a nonzero element N12,

N12(z) = 1
2	ε[I − (b ⊗ b − a ⊗ a) cos 2az + (b ⊗ a + a ⊗ b) sin 2az]. (49)

We see that the quantity 	ε = ε‖ − ε⊥ plays a role of a small perturbation parameter.
The normalized eigenvectors of matrix (48) are

|U1〉 = 1√
2

(
b
√

n

b/
√

n

)
, |U2〉 = 1√

2

(
a
√

n

a/
√

n

)
,

|U3〉 = 1√
2

(
b
√

n

−b/
√

n

)
, |U4〉 = 1√

2

(
a
√

n

−a/
√

n

)
,

where n = √
ε⊥ is the refractive index of the effective isotropic layer. The eigenvalues

corresponding to these eigenvectors are n1 = n2 = n and n3 = n4 = −n. The vectors |U1〉
and |U2〉 describe the eigenwaves of the isotropic layer with mutually perpendicular b- and
a-polarizations traveling in the positive direction of the z-axis while the vectors |U3〉 and |U4〉
describe the eigenwaves that travel in the negative direction.

12
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It is not difficult to see that the norms 〈Uj |Uj 〉 = 1 for j = 1, 2 and 〈Uj |Uj 〉 = −1 for
j = 3, 4 (η1 = η2 = −η3 = −η4 = 1). So, according to the third of the equations (32), we
have

〈U 1| = 1√
2
(b/

√
n b

√
n), 〈U 2| = 1√

2
(a/

√
n a

√
n),

〈U 3| = 1√
2
(b/

√
n − b

√
n), 〈U 4| = 1√

2
(a/

√
n − a

√
n).

Owing to coincidence of eigenvalues n1 and n2 we can introduce the eigen subspace C
4
+ of

the amplitude space C
4, spanned by vectors |U1〉 and |U2〉 and determined by the projective

operator

Q+ = |U1〉〈U 1| + |U2〉〈U 2| = 1

2

(
I nI

I/n I

)
. (50)

The other eigen subspace C
4
− is spanned by vectors |U3〉 and |U4〉 and determined by the

projective operator

Q− = |U3〉〈U 3| + |U4〉〈U 4| = 1

2

(
I −nI

−I/n I

)
. (51)

The operators Q+ (50) and Q− (51) satisfy the relations

Q2
+ = Q+, Q2

− = Q−, Q+Q− = Q−Q+ = 0,

Q+ + Q− = E =
(

I 0
0 I

)
, n(Q+ − Q−) = N0.

Taking into account these relations along with (50), (51) and the first of the equations (38),
the layer propagator in the zero-order approximation has the form (see (37))

P (0) = eiklQ+ + e−iklQ− =
(

I cos kl I in sin kl

I i
n

sin kl I cos kl

)
, (52)

where k = k0n = k0
√

ε⊥. In the first order of perturbation method we have

P (1) = 2π ik0[eiklQ+N (0)Q+ + e−iklQ−N (0)Q− + Q+N (2k)Q− + Q−N (−2k)Q+], (53)

N (k) being the Fourier image of the matrix N (z). Applying formulae (39) with respect to
(49), we establish that the only nonzero element of the matrix N (k) is

N12(k) = l	ε

4π

[
fkI − 1

2
(fk+2a + fk−2a)(b ⊗ b − a ⊗ a)

+
i

2
(fk+2a − fk−2a)(b ⊗ a + a ⊗ b)

]
,

where fk is a function of the wave number k introduced as

fk = sin kl/2

kl/2
, fk±2a = sin(k ± 2a)l/2

(k ± 2a)l/2
. (54)

After a fairly simple calculation we find the elements of the matrix P (1) (53):

P
(1)
11 = k0l	ε

8n
[−2 sin klI + 2f2a sin kl(b ⊗ b − a ⊗ a)+ (f2(k+a) − f2(k−a))(b ⊗ a + a ⊗ b)],

P
(1)
22 = k0l	ε

8n
[−2 sin klI + 2f2a sin kl(b ⊗ b − a ⊗ a)− (f2(k+a) − f2(k−a))(b ⊗ a + a ⊗ b)],

P
(1)
12 = i

k0l	ε

8
[2(cos kl + f2k)I − (2f2a cos kl + f2(k+a) + f2(k−a))(b ⊗ b − a ⊗ a)],

P
(1)
21 = i

k0l	ε

8n2
[2(cos kl − f2k)I − (2f2a cos kl − f2(k+a) − f2(k−a))(b ⊗ b − a ⊗ a)].

(55)

13
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Now we calculate the reflection and transmission operators in the zero and first order of
perturbation method. Let the crystal slab be surrounded by a homogeneous isotropic non-
magnetic medium with dielectric permittivity ε′. For normal incidence of light, the surface
impedance tensor (15) takes the form γ ′ = I/n′, where n′ = √

ε′ is the refractive index of the
surrounding medium. The factors in formulae (12) for operators r and d will be expressed in
terms of elements of P in the following way:

q ≡ (I − γ −)P

(
I

−γ

)
= P11 + P22 − P12

n′ − n′P21,

s ≡ (I γ −)P

(
I

−γ

)
= P11 − P22 − P12

n′ + n′P21.

(56)

Substitution of the elements of P (0) (52) into (56) gives

q(0) = I
[
2 cos kl − i

(
nr + n−1

r

)
sin kl

]
, s(0) = −I i

(
nr − n−1

r

)
sin kl,

where nr = n/n′ is the relative refraction index. Taking into account the first of formulae
(42), we arrive at the reflection and transmission operators in the zero-order approximation:

r(0) = − i
(
nr − n−1

r

)
sin kl

2 cos kl − i
(
nr + n−1

r
)

sin kl
I, d(0) = 2

2 cos kl − i
(
nr + n−1

r
)

sin kl
I. (57)

The first-order correction d(1) to the transmission operator can be obtained when the elements
(55) of the matrix P (1) are substituted into equation (56) for q and the second of the
equations (42) is taken into consideration:

d(1) = 2q−(1) = k0l	ε

4n

[
2 cos kl − i

(
nr + n−1

r

)
sin kl

]−2{[
4 sin kl + 2i

(
nr + n−1

r

)
cos kl

+ 2i
(
nr − n−1

r

)
f2k

]
I − [

4 sin klf2a + 2i
(
nr + n−1

r

)
cos klf2a

+ i
(
nr − n−1

r

)
(f2(k+a) + f2(k−a))

]
(b ⊗ b − a ⊗ a)

}
. (58)

Calculation of the correction r(1) to the reflection operator is more complicated. For s(1) we
have

s(1) = k0l	ε

8n

{−2i
[(

nr − n−1
r

)
cos kl +

(
nr + n−1

r

)
f2k

]
I + i

[
2
(
nr − n−1

r

)
cos klf2a

+
(
nr + n−1

r

)
(f2(k+a) + f2(k−a))

]
(b ⊗ b − a ⊗ a)

+ 2(f2(k+a) − f2(k−a))(b ⊗ a + a ⊗ b)
}
.

We expand the expression r = sq− and retain only the terms linear with respect to 	ε in the
first-order approximation:

r(1) = s(1)q−(0) + s(0)q−(1) = k0l	ε

4n

[
2 cos kl − i

(
nr + n−1

r

)
sin kl

]−2{−[
4 sin klf2k

+ 2i
(
nr − n−1

r

)
+ 2i

(
nr + n−1

r

)
cos klf2k

]
I +

[
2 sin kl(f2(k+a) + f2(k−a))

+ 2i
(
nr − n−1

r

)
f2a + i

(
nr + n−1

r

)
(f2(k+a) + f2(k−a)) cos kl

]
(b ⊗ b − a ⊗ a)

+
[
2 cos kl − i

(
nr + n−1

r

)
sin kl

]
(f2(k+a) − f2(k−a))(b ⊗ a + a ⊗ b)

}
. (59)

The general formulae (57)–(59) can be used to calculate the scalar reflectance and
transmittance in the first-order approximation for arbitrary polarization of light incident on
a slab. In particular, let us consider the nonpolarized light described by the beam tensor
�i = − 1

2q×2 = 1
2I . When the light is normally incident then the tensor w involved in (17)

14
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and (19) coincides with I. Taking into account that the trace of the tensor I is equal to 2, we
obtain in the zero-order approximation

R(0) = 1

2
tr(r(0)r(0)+

) =
(
nr − n−1

r

)2
sin2 kl

4 +
(
nr − n−1

r
)2

sin2 kl
,

(60)
D(0) = 1

2
tr(d(0)d(0)+

) = 4

4 +
(
nr − n−1

r
)2

sin2 kl
.

The formulae (60) are well known and describe reflection and transmission of a homogeneous
isotropic slab, and R(0) + D(0) = 1. Now using the relations in the form (43) along with
formula (58) and taking into account that the trace of the tensor b ⊗ b − a ⊗ a is zero, we find
the correction to the transmittance,

D
(1)
NP = Re tr(d(1)d(0)+

)= − 2k0l	ε
(
nr − n−1

r

)
sin kl

n
[
4 +

(
nr − n−1

r
)2

sin2 kl
]2

[(
nr − n−1

r

)
cos kl +

(
nr + n−1

r

) sin kl

kl

]
,

(61)

where the subscript NP stands for nonpolarized radiation. The correction R
(1)
NP to the reflectance

is calculated analogously with the use of equation (59) and turns out to be opposite in
sign with respect to D

(1)
NP: R

(1)
NP = −D

(1)
NP. It is noteworthy that the twist parameter a is

not present in expressions for R
(1)
NP and D

(1)
NP. For the normally incident nonpolarized light

the slab inhomogeneity introduced by twisting does not affect the first-order corrections of
perturbation method at all. This is not the case for polarized radiation. Let the radiation be
linearly polarized, described by the beam tensor �i = h ⊗ h, where h is an unit real vector
perpendicular to q. Then the zero-order reflectance and transmittance coincide with those of
(60), but in the first-order approximation

D
(1)
L = −R

(1)
L = D

(1)
NP +

k0l	ε
(
nr − n−1

r

)
sin kl

n
[
4 +

(
nr − n−1

r
)2

sin2 kl
]2

× [
2
(
nr − n−1

r

)
f2a cos kl +

(
nr + n−1

r

)
(f2(k+a) + f2(k−a))

]
cos 2θ, (62)

where θ is the angle between the vectors h and b. Here, the reflectance and transmittance
corrections depend not only on a but also on the angle θ , which characterizes the polarization
direction with respect to the helicoidal structure. Transition to the case of nonpolarized
radiation corresponds to averaging of coefficients D

(1)
L and R

(1)
L over θ from 0 to 2π . As a

result equation (62) transforms into (61).
Here, we do not calculate the reflectance and transmittance corrections R(2) and D(2)

in the second order of perturbation method, which are quadratic with respect to 	ε. They
become important when the dielectric permittivity ε′ of the surrounding medium coincides
with ε⊥ involved in (46) (n′ = n, nr = 1). For this case the corrections R(1) and D(1) linear
with respect to 	ε vanish. Note that according to the general formulae (37) and (38), the
second-order correction to the propagator has the form

P (2) = 2π(ik0)
2[eiklQ+N (2)(k, k)Q+ + e−iklQ−N (2)(−k,−k)Q−
+ Q+N (2)(k,−k)Q− + Q−N (2)(−k, k)Q+],

where the following two-variable function is introduced:

N (2)(kout, kin) =
∫ ∞

−∞
dk′N (kout − k′)Pc(k

′)N (k′ − kin), (63)
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and the Green’s function in (63) is represented by the expression

Pc(k
′) = −i

(
Q+

k′ − k − i0
+

Q−
k′ + k − i0

)
= − i

(k′ − i0)2 − k2

(
k′I nkI

kI/n k′I

)
(see also (40), (50) and (51)).

5. The first-order reflection and transmission of an inhomogeneous isotropic layer.
Application to one-dimensional photonic crystals

Here, we derive the first-order perturbation corrections to the reflection and transmission
factors of the electromagnetic wave normally incident on a weakly inhomogeneous layer with
an arbitrary dielectric permittivity profile ε(z). A rigorous solution of this problem can be
obtained by considering of the equation

d2E

dz2
+

ω2

c2
εE +

d

dz

(
1

ε

dε

dz
E

)
= 0 (64)

and the corresponding boundary conditions (see, for example, [65]). As is known,
equation (64) has closed-form solutions for only a few functions ε(z). Approximate techniques
for solving the wave equations of the type (64) are thus of importance [27, 65, 43], such as
geometrical optics approximation, successive approximation technique, multiple reflection
technique and some others.

Let a weakly inhomogeneous isotropic layer of thickness l be loss less (i.e., it is described
by a real function ε(z)) and surrounded by a homogeneous isotropic medium with refractive
index n′. Without loss of generality we consider z = z0 = −l/2 and z = z′ = l/2 as
expressions for the plane interfaces. In the zero-order approximation the layer is substituted
for an effective homogeneous isotropic medium with dielectric permittivity ε0. As a result,
the reflectance and transmittance in this approximation are given by formulae (60), where
nr = n/n′, k = k0n and n = √

ε0 is the refractive index of the effective medium. Generally
speaking, the choice of the value for ε0 is arbitrary but it is desirable for the difference ε(z)−ε0

to be as small as possible for all z ∈ (−l/2, l/2). We choose ε0 as the layer-averaged dielectric
permittivity,

ε0 = 1

l

∫ l/2

−l/2
dz ε(z). (65)

The constant part N0 of the matrix N(z) has the form (48), where ε⊥ is replaced by ε0.
It is clear that the projective operators Q+ and Q− of the eigen-subspaces C

4
+ and C

4
− are

determined by formulae (50) and (51), respectively, where n = √
ε0 now.

Let us turn to calculation of the first-order approximation. The matrix N (z) has a single
nonzero element N12(z) = [ε(z) − ε0]I , and its Fourier image N (k) has a single nonzero
element

N12(k) = ε0l

2π
(εk − fk)I. (66)

In (66) the following notation:

εk = 1

ε0l

∫ l/2

−l/2
dz e−ikzε(z), (67)

is introduced, fk determined by the first equation in (54). Note that ε−k = ε∗
k , since ε(z) is a

real function.
The layer propagator P (1) in the first-order approximation can be found according to

formula (53). In this formula the Fourier image N (0) is zero owing to the choice of dielectric
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Figure 3. One-dimensional photonic crystal with refractive indices of layers n1 and n2.

permittivity ε0 according to (65). The reflection and transmission operators as well as the
scalar reflectance and transmittance are calculated in the same way as those for twisted crystals
in the previous section. The final result is

R(1) = −D(1) = 4kl
(
n2

r − n−2
r

)
(Re ε2k − f2k) sin kl[

4 +
(
nr − n−1

r

)2
sin2 kl

]2 . (68)

Thus, comparatively simple equations (68), (65) and (67) (see also (54)) determine the
corrections to the reflection and transmission factors of arbitrary inhomogeneity profile ε(z) in
the first order of perturbation method. Formulae (68) are valid for arbitrary light polarization,
since light incidence is normal.

Now let us consider a one-dimensional photonic crystal with N alternating layers of
thickness 	l = l/N . Let the number of layers be N = 4m + 1, where m = 0, 1, . . . , and
the function ε(z) is even (see figure 3). We suppose that the refractive indices n1 and n2 of
the layers differ slightly. According to formula (65) in the zero-order approximation such a
crystal is substituted for an effective homogeneous isotropic medium with the refractive index

n =
√

n2
1 + n2

2

2
+

n2
1 − n2

2

2N
. (69)

In (67), the piecewise constant function ε(z) will be integrated and such an integral is a sum
of geometric progressions. As a result, in the case under consideration formula (68) for the
reflectance and transmittance corrections takes the form

R(1) = −D(1) = 2
(
n2

r − n−2
r

)
sin kl[

4 +
(
nr − n−1

r

)2
sin2 kl

]2

(
n2

1 sin N+1
N

kl + n2
2 sin N−1

N
kl

n2 cos kl
N

− 2 sin kl

)
. (70)

Consequently, the reflection and transmission factors of the one-dimensional photonic crystal
in the first order of perturbation method are equal to R(0) + R(1) and D(0) + D(1), respectively,
where R(0) and D(0) are calculated by formulae (60).

6. Numerical comparison of approximate and exact solutions

Now we compare the approximate reflection factors for one-dimensional inhomogeneous
twisted crystals (section 4) and photonic crystals (section 5) with the exact ones.
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Figure 4. Dependence of the reflectance on the slab thickness L = l/λ0 (parameter of twisting
A = 0.2, polarization direction θ = 30o). Solid line: the exact solution, dot-and-dash line: the
zero order, dashed line: the first order.
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Figure 5. Dependence of the reflectance on the anisotropy parameter 	ε for L = 4.0 (left) and
L = 4.1 (right); ε⊥ = 2.3798, A = 0.2, θ = 30o. The lines are as in figure 4.

For normal incidence of light on a twisted uniaxial crystal the matrix N(z) of the equation
system (2) has the tensor elements in the form of (47) and can be factorized in the following
way:

N(z) =
(

S(z) 0
0 S(z)

)(
0 σ

I 0

)(
S̃(z) 0

0 S̃(z)

)
, (71)

where σ = −q×εq× = ε⊥b⊗b+ε‖a⊗a (see (46)) and S(z) = S̃(−z) is the rotation operator
for the angle φ = az around the q-axis. Such a representation of the matrix N(z) makes it easy
to find the layer propagator P(z,−l/2) involved in the matrix solution of equation system (6),

P(z,−l/2) =
(

S(z) 0
0 S(z)

)
exp[ik0(z + l/2)M]

(
S(l/2) 0

0 S(l/2)

)
. (72)

The matrix M in (72) does not depend on z and has the form

M =
(

iAq× σ

I iAq×

)
, (73)

where a parameter A = a/k0 is introduced, which represents the number of revolutions of
the helicoidal structure per wavelength. Using the equation dS/dz = aSq×, it is not difficult
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to make sure that the propagator P(z,−l/2) is in accordance with equation (7). By setting
z = l/2 in (72) we obtain the matrix P = P(l/2,−l/2) involved in (12) for the reflection
and transmission operators r and d. Then after substitution of the operator r into formula (17)
at w = I , we find the reflectance R. The transmittance D is calculated as D = 1 − R, since
energy losses in the crystal under consideration are absent.

Thus, the matrix P is expressed in terms of an exponent exp(ik0lM), which can be
calculated in closed form, for instance, with the use of spectral decomposition of the matrix M
(73). We do not give here the somewhat intricate expressions for the elements of P. Instead,
we make use of computer algebra systems to calculate numerically the matrix exponent
exp(ik0lM) for specified ε⊥, ε‖ and A. We then plot the dependence of the exact coefficient
R on the media parameters.

Below we compare, on the one hand, the reflection coefficients R(0) and R(0) + R
(1)
L for

linearly polarized light in the zero- and first-order approximation according to formulae (60)
and (62) and, on the other hand, the exact values of R according to (72), (12) and (17). We
consider normal incidence of radiation with wavelength λ0 = 632.8 nm on a twisted quartz
slab with the refractive indices for ordinary waves n = no = 1.5427 and for extraordinary
waves ne = 1.5517 (respectively, ε⊥ = n2

o = 2.3798, ε‖ = n2
e = 2.4078 and 	ε = 0.0280).

The slab is in air (n′ = 1). In figure 4, these reflection coefficients are plotted as a function of
the slab thickness L = k0l/(2π) in units λ0. The curve of the zero-order approximation turns
out to be shifted to the right of the curve that corresponds to an exact solution. The reflectance
of the first-order approximation becomes different from the exact one by more than 15% in
the maxima of R for values L � 13. The first-order approximation turns out to be inapplicable
near the minima (L ≈ m/(2n),m = 1, 2, . . . ) since it gives negative reflectances there (see
figure 4).

The zero-order approximation does not depend on the perturbation parameter 	ε, and the
first-order approximation depends on this parameter linearly when other parameters are fixed
(figure 5). The straight line corresponding to the linear approximation with respect to 	ε is
tangent to the curve of exact solution at point 	ε = 0. It means that formulae (62) represent
the terms of a power series expansion of functions R(	ε) and D(	ε) which are linear with
respect to 	ε. The higher-order corrections of the perturbation method will correspond to
subsequent terms of the series expansion.

In figure 6, the dependence of exact and approximate reflectance on the refractive index
n′ of the surrounding medium is shown when other parameters are fixed. As was noted in
section 4, the first-order approximation for coefficient R vanishes for n′ = n. It is seen from
figure 6 that this approximation can be negative at n′ � n. So in that case the higher-order
corrections to R should be used.

In figure 7, the plots of R as a function of the incident wave polarization direction with
respect to the vector b are shown. The relative error of the zero-order approximation for
indicated values of the parameter of twisting and the slab thickness can reach 17%. For the
first-order approximation it does not exceed 4%.

Finally, in figure 8 the plots of exact and approximate coefficient R as a function of the
parameter of twisting A = a/k0 are presented. At A ≈ n (i.e., at a ≈ k = nk0) the reflectance
reaches a maximum or a minimum depending on the polarization direction of incident light.
Resonance-like dependence of R on A is explained by wave interference on the helicoidal
structure (period h = π/a coincides with half-wave length for the structure λ/2 = π/k)
and is described by a factor f2(k−a) cos 2θ = sin(k−a)l

(k−a)l
cos 2θ in formula (62). Note that at

θ = 45o + 90om, where m is an integer, the first-order correction R
(1)
L does not depend on a

and coincides with the correction R
(1)
NP for nonpolarized light (see horizontal dashed line in
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Figure 6. The reflectance of the quartz slab as a function of the refractive index n′ of the surrounding
medium (slab thickness L = 7, parameter of twisting A = 0.2, polarization direction θ = 30o).
The right-hand part shows the enlarged plots near the minimum of R. The lines are as in figure 4.

50 100 150 200
θ, Degrees

0.12

0.13

0.14

0.15

0.16
R

Figure 7. The reflectance of the slab for different light polarization directions (slab thickness
L = 7, parameter of twisting A = 0.2, n′ = 1). The lines are as in figure 4.

figure 8(c)). However, for these values of angle θ the resonance peak can be seen to remain
in the exact solution. As calculation shows, in fact it stops to be strongly pronounced at
θ = 50o + 180om and θ = 130o + 180om (solid line in figure 8(d)).

Thus, for the case of light propagation through a twisted uniaxial slab the first-order
approximation of perturbation method sufficiently agrees with the exact reflectance at L < 13
and |	ε| < 0.08 except when the reflectance is close to zero.

For one-dimensional photonic crystals the exact reflectance R and transmittance D are
calculated by formulae (12), (17) and (19). In this connection the crystal propagator P can
be found by numerical multiplication of propagators of the type (52) for separate layers (in
formula (52) the refractive index n has to be replaced by the refractive indices n1 or n2 of
the layers, and l by the thickness of the layer 	l = l/N ). At the same time the zero- and
first-order approximate values of R and D are calculated by formulae (60), (69) and (70). In
figure 9, the dependence of exact and approximate reflectance of the photonic crystal on the
normalized frequency � = k0	l = ω	l/c of the normally incident electromagnetic wave
in the vicinity of the first band gap is shown for different numbers of layers. It is supposed
that the refractive indices of the layers n1 and n2 differ a little and almost do not depend on ω

within this frequency band (small dispersion).
When the number of layers is not large (N = 9, see figure 9(a)), there is a weakly

pronounced reflectance maximum at � ≈ π/(2n), where n is the refractive index of the
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Figure 8. Dependence of the reflectance on the parameter of twisting A (slab thickness
L = 7, n′ = 1; polarization direction (a) θ = 30o, (b) θ = 65o, (c) θ = 45o and (d) θ = 50o).
The lines are as in figure 4.
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Figure 9. The reflectance of a one-dimensional photonic crystal as a function of the normalized
wave frequency � (refractive indices n1 = 1.25, n2 = 1.22 and n′ = 1). Number of layers is (a)
N = 9 and (b) N = 225. The lines are as in figure 4.

effective isotropic medium. For this case the first-order approximation of perturbation method
reasonably describes the dependence R = R(�). But if number of layers is rather large
(N = 225, figure 9(b)), a whole band gap appears where the transmission of the photonic
crystal is small. As seen in figure 9(b), the first-order approximation is poorly suited to describe
the dependence R = R(�) within and around a band gap, although it provides the correct
location for the band gap itself. Indeed, according to formula (70) the correction R(1) reaches
its maximum when cos(kl/N) ≈ 0 or cos n� ≈ 0. Therefore, the location of the mth band
gap is �m ≈ (

m + 1
2

)
π
n
,m � 1. It is evident that at least the second-order approximation
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of perturbation method is needed to evaluate the forbidden bandwidth of various weakly
inhomogeneous one-dimensional photonic crystals including those with defects. That is a
subject of a separate investigation.

7. Conclusion

With the use of formulae (22), (37), (38) and (43) obtained above one can calculate in closed
form the reflection and transmission of a wide variety of weakly inhomogeneous stratified
linear bianisotropic media in an arbitrary order of perturbation method. These media can
be either continuously inhomogeneous or multilayered with abrupt plane interfaces, but the
optical properties of layers should not differ considerably. The technique proposed here is of
importance as it is impossible to obtain an exact analytical solution of wave equations for the
weakly inhomogeneous media in many cases.

We do not present a rigorous mathematical study of errors for our approximate solutions.
These errors are determined by many factors. The most important of them is the degree of
inhomogeneity of the type λε−1	ε/	z, λµ−1	µ/	z and so on, where λ is the wavelength.
Note that this error can be different even for the same medium since it depends on how the
constant matrix N0 (21) of the zero-order approximation is chosen. For instance, for the
twisted uniaxial crystals considered in section 4 the effective homogeneous isotropic medium
characterized by the matrix N0 in the form (48) was used as the zero-order approximation.
Another choice of the matrix N0 is also possible

N0 =
(

0 σ

I 0

)
=

(
0 ε⊥b ⊗ b + ε‖a ⊗ a

I 0

)
(see (71)) that corresponds to a non-twisted uniaxial crystal. It is clear that in this case
the formulae for the reflection and transmission coefficients in the zero and higher orders of
perturbation method will be more accurate, although the calculation of corrections will be
more complicated.

For finite-thickness bianisotropic layers the corrections of perturbation method will be
finite in any order as seen from formula (23) for the nth term of series for the propagator P.
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